Minimum Discrepancy Estimation in Probabilistic Knowledge Structures

نویسندگان

  • Jürgen Heller
  • Florian Wickelmaier
چکیده

Practical applications of the theory of knowledge structures often rely on a probabilistic version, known as the basic local independence model. The paper outlines various procedures for estimating its parameters, including maximum likelihood (ML) via the expectation-maximization (EM) algorithm, the computationally efficient minimum discrepancy (MD) estimation as well as MDML, a hybrid method combining the two approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Inference with Unnormalized Discrete Models and Localized Homogeneous Divergences

In this paper, we focus on parameters estimation of probabilistic models in discrete space. A naive calculation of the normalization constant of the probabilistic model on discrete space is often infeasible and statistical inference based on such probabilistic models has difficulty. In this paper, we propose a novel estimator for probabilistic models on discrete space, which is derived from an ...

متن کامل

DESIGN OF MINIMUM SEEPAGE LOSS IRRIGATION CANAL SECTIONS USING PROBABILISTIC SEARCH

To ensure efficient performance of irrigation canals, the losses from the canals need to be minimized. In this paper a modified formulation is presented to solve the optimization model for the design of different canal geometries for minimum seepage loss, in meta-heuristic environment. The complex non-linear and non-convex optimization model for canal design is solved using a probabilistic sear...

متن کامل

Probabilistic Assessment of Earthquake Damage and Loss for the City of Tehran, Iran

Tehran is one of the densely populated metropolises located in earthquake-prone regions. Tehran, the population of which surpasses 8 million people, is the most populated area in Iran. There are historical evidences confirming that catastrophic earthquakes have destroyed the city in past years. In the present paper, our study covers all parts of Tehran because there is the potential of signific...

متن کامل

Applying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties

The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case.  Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...

متن کامل

Application of the χ principle and unbiased predictive risk estimator for determining the regularization parameter in 3D focusing gravity inversion

The χ principle and the unbiased predictive risk estimator are used to determine optimal regularization parameters in the context of 3D focusing gravity inversion with the minimum support stabilizer. At each iteration of the focusing inversion the minimum support stabilizer is determined and then the fidelity term is updated using the standard form transformation. Solution of the resulting Tikh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2013